Search results for "Nonlinear equations"

showing 7 items of 7 documents

Asymptotic mean value formulas for parabolic nonlinear equations

2021

In this paper we characterize viscosity solutions to nonlinear parabolic equations (including parabolic Monge–Ampère equations) by asymptotic mean value formulas. Our asymptotic mean value formulas can be interpreted from a probabilistic point of view in terms of dynamic programming principles for certain two-player, zero-sum games. peerReviewed

osittaisdifferentiaaliyhtälötasymptotic mean value formulasparabolic nonlinear equationsMathematics - Analysis of PDEsviscosity solutionsGeneral MathematicsFOS: MathematicsMathematics::Analysis of PDEsparabolic Monge–Ampère equationsAnalysis of PDEs (math.AP)
researchProduct

Characterization of ellipsoids through an overdetermined boundary value problem of Monge–Ampère type

2014

Abstract The study of the optimal constant in an Hessian-type Sobolev inequality leads to a fully nonlinear boundary value problem, overdetermined with non-standard boundary conditions. We show that all the solutions have ellipsoidal symmetry. In the proof we use the maximum principle applied to a suitable auxiliary function in conjunction with an entropy estimate from affine curvature flow.

Curvature flowApplied MathematicsGeneral MathematicsMathematical analysisFully nonlinear equationsAuxiliary functionEllipsoidSobolev inequalityOverdetermined systemMaximum principlesMaximum principleSettore MAT/05 - Analisi MatematicaAffine curvatureOverdetermined problemsEntropy (information theory)Boundary value problemMathematics
researchProduct

Numerical study of a multiscale expansion of the Korteweg de Vries equation and Painlev\'e-II equation

2007

The Cauchy problem for the Korteweg de Vries (KdV) equation with small dispersion of order $\e^2$, $\e\ll 1$, is characterized by the appearance of a zone of rapid modulated oscillations. These oscillations are approximately described by the elliptic solution of KdV where the amplitude, wave-number and frequency are not constant but evolve according to the Whitham equations. Whereas the difference between the KdV and the asymptotic solution decreases as $\epsilon$ in the interior of the Whitham oscillatory zone, it is known to be only of order $\epsilon^{1/3}$ near the leading edge of this zone. To obtain a more accurate description near the leading edge of the oscillatory zone we present a…

PhysicsLeading edgeSmall dispersion limitComputer Science::Information RetrievalGeneral MathematicsMathematical analysisGeneral EngineeringMathematics::Analysis of PDEsGeneral Physics and AstronomyNonlinear equationsDispersive partial differential equationShock wavesAmplitudeNonlinear Sciences::Exactly Solvable and Integrable SystemsInitial value problemWavenumberDispersive shockDispersion (water waves)Constant (mathematics)Korteweg–de Vries equationDevries equationAsymptoticsSettore MAT/07 - Fisica MatematicaNonlinear Sciences::Pattern Formation and SolitonsMathematical Physics
researchProduct

Modulational instability and generation of self-induced transparency solitons in resonant optical fibers

2009

International audience; We consider continuous-wave propagation through a fiber doped with two-level resonant atoms, which is described by a system of nonlinear Schrodinger-Maxwell-Bloch (NLS-MB) equations. We identify the modulational instability (MI) conditions required for the generation of ultrashort pulses, in cases of both anomalous and normal GVD (group-velocity dispersion). It is shown that the self-induced transparency (SIT) induces non-conventional MI sidebands. The main result is a prediction of the existence of both bright and dark SIT solitons in the anomalous and normal GVD regimes.

Dark solitonOptical fiberNonlinear opticsElectromagnetic wave propagationWave propagationSelf-induced transparency01 natural sciencesDoped materialslaw.invention010309 opticsOpticslawVelocity dispersion0103 physical sciencesDispersion (optics)Optical solitonsGroup velocityOptical fibers010306 general physicsSelf-phase modulationNonlinear Sciences::Pattern Formation and SolitonsModulation instabilityTwo level atomPhysicsUltrashort pulsebusiness.industryNonlinear opticsSelf-phase modulationNonlinear equationsAtomic and Molecular Physics and Optics[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryModulational instability[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistry[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistryGroup velocitySchroedinger equationLinear stabilitybusinessUltrashort pulse
researchProduct

Local behaviour of singular solutions for nonlinear elliptic equations in divergence form

2012

We consider the following class of nonlinear elliptic equations $$\begin{array}{ll}{-}{\rm div}(\mathcal{A}(|x|)\nabla u) +u^q=0\quad {\rm in}\; B_1(0)\setminus\{0\}, \end{array}$$ where q > 1 and $${\mathcal{A}}$$ is a positive C 1(0,1] function which is regularly varying at zero with index $${\vartheta}$$ in (2−N,2). We prove that all isolated singularities at zero for the positive solutions are removable if and only if $${\Phi\not\in L^q(B_1(0))}$$ , where $${\Phi}$$ denotes the fundamental solution of $${-{\rm div}(\mathcal{A}(|x|)\nabla u)=\delta_0}$$ in $${\mathcal D'(B_1(0))}$$ and δ0 is the Dirac mass at 0. Moreover, we give a complete classification of the behaviour near zero of al…

Applied MathematicsMathematical analysisZero (complex analysis)Function (mathematics)DivergenceCombinatoricsNonlinear systemSettore MAT/05 - Analisi MatematicaFundamental solutionnonlinear equationsNabla symbolSingular solutionAnalysisMathematics
researchProduct

A class of quasi-Newton generalized Steffensen methods on Banach spaces

2002

AbstractWe consider a class of generalized Steffensen iterations procedure for solving nonlinear equations on Banach spaces without any derivative. We establish the convergence under the Kantarovich–Ostrowski's conditions. The majorizing sequence will be a Newton's type sequence, thus the convergence can have better properties. Finally, a numerical comparation with the classical methods is presented.

SequenceClass (set theory)Applied MathematicsMathematical analysisBanach spaceKantarovich conditionsType (model theory)Nonlinear equationsGeneralized Steffensen methodsSteffensen's methodNonlinear systemComputational MathematicsConvergence (routing)Applied mathematicsQuasi-Newton methodMathematicsJournal of Computational and Applied Mathematics
researchProduct

On Discovering Low Order Models in Biochemical Reaction Kinetics

2007

We develop a method by which a large number of differential equations representing biochemical reaction kinetics may be represented by a smaller number of differential equations. The basis of our technique is a conjecture that the high dimension equations of biochemical kinetics, which involve reaction terms of specific forms, are actually implementing a low dimension system whose behavior requires right hand sides that can not be biochemically implemented. For systems that satisfy this conjecture, we develop a simple approximation scheme based on multilinear algebra that extracts the low dimensional system from simulations of the high dimension system. We demonstrate this technique on a st…

Multilinear algebraNonlinear systemBasis (linear algebra)Dimension (vector space)Settore ING-INF/04 - AutomaticaSimple (abstract algebra)Differential equationMathematical analysisChaoticApplied mathematicsDimensional modelingKinetic theory Nonlinear equations Polynomials Differential equationsMathematics
researchProduct